Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Inter-domain electron transfer in cellobiose dehydrogenase: modulation by pH and divalent cations.

Identifieur interne : 000258 ( Main/Exploration ); précédent : 000257; suivant : 000259

Inter-domain electron transfer in cellobiose dehydrogenase: modulation by pH and divalent cations.

Auteurs : Daniel Kracher [Autriche] ; Kawah Zahma [Autriche] ; Christopher Schulz [Suède] ; Christoph Sygmund [Autriche] ; Lo Gorton [Suède] ; Roland Ludwig [Autriche]

Source :

RBID : pubmed:25913436

Descripteurs français

English descriptors

Abstract

The flavocytochrome cellobiose dehydrogenase (CDH) is secreted by wood-decomposing fungi, and is the only known extracellular enzyme with the characteristics of an electron transfer protein. Its proposed function is reduction of lytic polysaccharide mono-oxygenase for subsequent cellulose depolymerization. Electrons are transferred from FADH2 in the catalytic flavodehydrogenase domain of CDH to haem b in a mobile cytochrome domain, which acts as a mediator and transfers electrons towards the active site of lytic polysaccharide mono-oxygenase to activate oxygen. This vital role of the cytochrome domain is little understood, e.g. why do CDHs exhibit different pH optima and rates for inter-domain electron transfer (IET)? This study uses kinetic techniques and docking to assess the interaction of both domains and the resulting IET with regard to pH and ions. The results show that the reported elimination of IET at neutral or alkaline pH is caused by electrostatic repulsion, which prevents adoption of the closed conformation of CDH. Divalent alkali earth metal cations are shown to exert a bridging effect between the domains at concentrations of > 3 mm, thereby neutralizing electrostatic repulsion and increasing IET rates. The necessary high ion concentration, together with the docking results, show that this effect is not caused by specific cation binding sites, but by various clusters of Asp, Glu, Asn, Gln and the haem b propionate group at the domain interface. The results show that a closed conformation of both CDH domains is necessary for IET, but the closed conformation also increases the FAD reduction rate by an electron pulling effect.

DOI: 10.1111/febs.13310
PubMed: 25913436
PubMed Central: PMC4676925


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Inter-domain electron transfer in cellobiose dehydrogenase: modulation by pH and divalent cations.</title>
<author>
<name sortKey="Kracher, Daniel" sort="Kracher, Daniel" uniqKey="Kracher D" first="Daniel" last="Kracher">Daniel Kracher</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Food Sciences and Technology, Food Biotechnology Laboratory, University of Natural Resources and Life Sciences, Vienna, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Department of Food Sciences and Technology, Food Biotechnology Laboratory, University of Natural Resources and Life Sciences, Vienna</wicri:regionArea>
<placeName>
<settlement type="city">Vienne (Autriche)</settlement>
<region nuts="2" type="province">Vienne (Autriche)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zahma, Kawah" sort="Zahma, Kawah" uniqKey="Zahma K" first="Kawah" last="Zahma">Kawah Zahma</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Food Sciences and Technology, Food Biotechnology Laboratory, University of Natural Resources and Life Sciences, Vienna, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Department of Food Sciences and Technology, Food Biotechnology Laboratory, University of Natural Resources and Life Sciences, Vienna</wicri:regionArea>
<placeName>
<settlement type="city">Vienne (Autriche)</settlement>
<region nuts="2" type="province">Vienne (Autriche)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schulz, Christopher" sort="Schulz, Christopher" uniqKey="Schulz C" first="Christopher" last="Schulz">Christopher Schulz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Analytical Chemistry, Biochemistry and Structural Biology, Lund University, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Analytical Chemistry, Biochemistry and Structural Biology, Lund University</wicri:regionArea>
<wicri:noRegion>Lund University</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sygmund, Christoph" sort="Sygmund, Christoph" uniqKey="Sygmund C" first="Christoph" last="Sygmund">Christoph Sygmund</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Food Sciences and Technology, Food Biotechnology Laboratory, University of Natural Resources and Life Sciences, Vienna, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Department of Food Sciences and Technology, Food Biotechnology Laboratory, University of Natural Resources and Life Sciences, Vienna</wicri:regionArea>
<placeName>
<settlement type="city">Vienne (Autriche)</settlement>
<region nuts="2" type="province">Vienne (Autriche)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gorton, Lo" sort="Gorton, Lo" uniqKey="Gorton L" first="Lo" last="Gorton">Lo Gorton</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Analytical Chemistry, Biochemistry and Structural Biology, Lund University, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Analytical Chemistry, Biochemistry and Structural Biology, Lund University</wicri:regionArea>
<wicri:noRegion>Lund University</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ludwig, Roland" sort="Ludwig, Roland" uniqKey="Ludwig R" first="Roland" last="Ludwig">Roland Ludwig</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Food Sciences and Technology, Food Biotechnology Laboratory, University of Natural Resources and Life Sciences, Vienna, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Department of Food Sciences and Technology, Food Biotechnology Laboratory, University of Natural Resources and Life Sciences, Vienna</wicri:regionArea>
<placeName>
<settlement type="city">Vienne (Autriche)</settlement>
<region nuts="2" type="province">Vienne (Autriche)</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25913436</idno>
<idno type="pmid">25913436</idno>
<idno type="doi">10.1111/febs.13310</idno>
<idno type="pmc">PMC4676925</idno>
<idno type="wicri:Area/Main/Corpus">000254</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000254</idno>
<idno type="wicri:Area/Main/Curation">000254</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000254</idno>
<idno type="wicri:Area/Main/Exploration">000254</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Inter-domain electron transfer in cellobiose dehydrogenase: modulation by pH and divalent cations.</title>
<author>
<name sortKey="Kracher, Daniel" sort="Kracher, Daniel" uniqKey="Kracher D" first="Daniel" last="Kracher">Daniel Kracher</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Food Sciences and Technology, Food Biotechnology Laboratory, University of Natural Resources and Life Sciences, Vienna, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Department of Food Sciences and Technology, Food Biotechnology Laboratory, University of Natural Resources and Life Sciences, Vienna</wicri:regionArea>
<placeName>
<settlement type="city">Vienne (Autriche)</settlement>
<region nuts="2" type="province">Vienne (Autriche)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zahma, Kawah" sort="Zahma, Kawah" uniqKey="Zahma K" first="Kawah" last="Zahma">Kawah Zahma</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Food Sciences and Technology, Food Biotechnology Laboratory, University of Natural Resources and Life Sciences, Vienna, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Department of Food Sciences and Technology, Food Biotechnology Laboratory, University of Natural Resources and Life Sciences, Vienna</wicri:regionArea>
<placeName>
<settlement type="city">Vienne (Autriche)</settlement>
<region nuts="2" type="province">Vienne (Autriche)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schulz, Christopher" sort="Schulz, Christopher" uniqKey="Schulz C" first="Christopher" last="Schulz">Christopher Schulz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Analytical Chemistry, Biochemistry and Structural Biology, Lund University, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Analytical Chemistry, Biochemistry and Structural Biology, Lund University</wicri:regionArea>
<wicri:noRegion>Lund University</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sygmund, Christoph" sort="Sygmund, Christoph" uniqKey="Sygmund C" first="Christoph" last="Sygmund">Christoph Sygmund</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Food Sciences and Technology, Food Biotechnology Laboratory, University of Natural Resources and Life Sciences, Vienna, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Department of Food Sciences and Technology, Food Biotechnology Laboratory, University of Natural Resources and Life Sciences, Vienna</wicri:regionArea>
<placeName>
<settlement type="city">Vienne (Autriche)</settlement>
<region nuts="2" type="province">Vienne (Autriche)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gorton, Lo" sort="Gorton, Lo" uniqKey="Gorton L" first="Lo" last="Gorton">Lo Gorton</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Analytical Chemistry, Biochemistry and Structural Biology, Lund University, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Analytical Chemistry, Biochemistry and Structural Biology, Lund University</wicri:regionArea>
<wicri:noRegion>Lund University</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ludwig, Roland" sort="Ludwig, Roland" uniqKey="Ludwig R" first="Roland" last="Ludwig">Roland Ludwig</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Food Sciences and Technology, Food Biotechnology Laboratory, University of Natural Resources and Life Sciences, Vienna, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Department of Food Sciences and Technology, Food Biotechnology Laboratory, University of Natural Resources and Life Sciences, Vienna</wicri:regionArea>
<placeName>
<settlement type="city">Vienne (Autriche)</settlement>
<region nuts="2" type="province">Vienne (Autriche)</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The FEBS journal</title>
<idno type="eISSN">1742-4658</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Binding Sites (MeSH)</term>
<term>Carbohydrate Dehydrogenases (chemistry)</term>
<term>Carbohydrate Dehydrogenases (metabolism)</term>
<term>Cations, Divalent (metabolism)</term>
<term>Cytochromes c (metabolism)</term>
<term>Electron Transport (MeSH)</term>
<term>Fungal Proteins (chemistry)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Hydrogen-Ion Concentration (MeSH)</term>
<term>Kinetics (MeSH)</term>
<term>Models, Molecular (MeSH)</term>
<term>Phanerochaete (enzymology)</term>
<term>Protein Conformation (MeSH)</term>
<term>Protein Interaction Domains and Motifs (MeSH)</term>
<term>Recombinant Proteins (chemistry)</term>
<term>Recombinant Proteins (metabolism)</term>
<term>Sordariales (enzymology)</term>
<term>Static Electricity (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Carbohydrate dehydrogenases (composition chimique)</term>
<term>Carbohydrate dehydrogenases (métabolisme)</term>
<term>Cations divalents (métabolisme)</term>
<term>Cinétique (MeSH)</term>
<term>Concentration en ions d'hydrogène (MeSH)</term>
<term>Conformation des protéines (MeSH)</term>
<term>Cytochromes c (métabolisme)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Motifs et domaines d'intéraction protéique (MeSH)</term>
<term>Phanerochaete (enzymologie)</term>
<term>Protéines fongiques (composition chimique)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Protéines recombinantes (composition chimique)</term>
<term>Protéines recombinantes (métabolisme)</term>
<term>Sites de fixation (MeSH)</term>
<term>Sordariales (enzymologie)</term>
<term>Transport d'électrons (MeSH)</term>
<term>Électricité statique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Carbohydrate Dehydrogenases</term>
<term>Fungal Proteins</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbohydrate Dehydrogenases</term>
<term>Cations, Divalent</term>
<term>Cytochromes c</term>
<term>Fungal Proteins</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Carbohydrate dehydrogenases</term>
<term>Protéines fongiques</term>
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Phanerochaete</term>
<term>Sordariales</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Phanerochaete</term>
<term>Sordariales</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Carbohydrate dehydrogenases</term>
<term>Cations divalents</term>
<term>Cytochromes c</term>
<term>Protéines fongiques</term>
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Binding Sites</term>
<term>Electron Transport</term>
<term>Hydrogen-Ion Concentration</term>
<term>Kinetics</term>
<term>Models, Molecular</term>
<term>Protein Conformation</term>
<term>Protein Interaction Domains and Motifs</term>
<term>Static Electricity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cinétique</term>
<term>Concentration en ions d'hydrogène</term>
<term>Conformation des protéines</term>
<term>Modèles moléculaires</term>
<term>Motifs et domaines d'intéraction protéique</term>
<term>Sites de fixation</term>
<term>Transport d'électrons</term>
<term>Électricité statique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The flavocytochrome cellobiose dehydrogenase (CDH) is secreted by wood-decomposing fungi, and is the only known extracellular enzyme with the characteristics of an electron transfer protein. Its proposed function is reduction of lytic polysaccharide mono-oxygenase for subsequent cellulose depolymerization. Electrons are transferred from FADH2 in the catalytic flavodehydrogenase domain of CDH to haem b in a mobile cytochrome domain, which acts as a mediator and transfers electrons towards the active site of lytic polysaccharide mono-oxygenase to activate oxygen. This vital role of the cytochrome domain is little understood, e.g. why do CDHs exhibit different pH optima and rates for inter-domain electron transfer (IET)? This study uses kinetic techniques and docking to assess the interaction of both domains and the resulting IET with regard to pH and ions. The results show that the reported elimination of IET at neutral or alkaline pH is caused by electrostatic repulsion, which prevents adoption of the closed conformation of CDH. Divalent alkali earth metal cations are shown to exert a bridging effect between the domains at concentrations of > 3 mm, thereby neutralizing electrostatic repulsion and increasing IET rates. The necessary high ion concentration, together with the docking results, show that this effect is not caused by specific cation binding sites, but by various clusters of Asp, Glu, Asn, Gln and the haem b propionate group at the domain interface. The results show that a closed conformation of both CDH domains is necessary for IET, but the closed conformation also increases the FAD reduction rate by an electron pulling effect.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25913436</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>11</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1742-4658</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>282</Volume>
<Issue>16</Issue>
<PubDate>
<Year>2015</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>The FEBS journal</Title>
<ISOAbbreviation>FEBS J</ISOAbbreviation>
</Journal>
<ArticleTitle>Inter-domain electron transfer in cellobiose dehydrogenase: modulation by pH and divalent cations.</ArticleTitle>
<Pagination>
<MedlinePgn>3136-48</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/febs.13310</ELocationID>
<Abstract>
<AbstractText>The flavocytochrome cellobiose dehydrogenase (CDH) is secreted by wood-decomposing fungi, and is the only known extracellular enzyme with the characteristics of an electron transfer protein. Its proposed function is reduction of lytic polysaccharide mono-oxygenase for subsequent cellulose depolymerization. Electrons are transferred from FADH2 in the catalytic flavodehydrogenase domain of CDH to haem b in a mobile cytochrome domain, which acts as a mediator and transfers electrons towards the active site of lytic polysaccharide mono-oxygenase to activate oxygen. This vital role of the cytochrome domain is little understood, e.g. why do CDHs exhibit different pH optima and rates for inter-domain electron transfer (IET)? This study uses kinetic techniques and docking to assess the interaction of both domains and the resulting IET with regard to pH and ions. The results show that the reported elimination of IET at neutral or alkaline pH is caused by electrostatic repulsion, which prevents adoption of the closed conformation of CDH. Divalent alkali earth metal cations are shown to exert a bridging effect between the domains at concentrations of > 3 mm, thereby neutralizing electrostatic repulsion and increasing IET rates. The necessary high ion concentration, together with the docking results, show that this effect is not caused by specific cation binding sites, but by various clusters of Asp, Glu, Asn, Gln and the haem b propionate group at the domain interface. The results show that a closed conformation of both CDH domains is necessary for IET, but the closed conformation also increases the FAD reduction rate by an electron pulling effect.</AbstractText>
<CopyrightInformation>© 2015 The Authors. FEBS Journal published by John Wiley & Sons Ltd on behalf of FEBS.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kracher</LastName>
<ForeName>Daniel</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Food Sciences and Technology, Food Biotechnology Laboratory, University of Natural Resources and Life Sciences, Vienna, Austria.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zahma</LastName>
<ForeName>Kawah</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Food Sciences and Technology, Food Biotechnology Laboratory, University of Natural Resources and Life Sciences, Vienna, Austria.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schulz</LastName>
<ForeName>Christopher</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Analytical Chemistry, Biochemistry and Structural Biology, Lund University, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sygmund</LastName>
<ForeName>Christoph</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Food Sciences and Technology, Food Biotechnology Laboratory, University of Natural Resources and Life Sciences, Vienna, Austria.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gorton</LastName>
<ForeName>Lo</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Analytical Chemistry, Biochemistry and Structural Biology, Lund University, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ludwig</LastName>
<ForeName>Roland</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Food Sciences and Technology, Food Biotechnology Laboratory, University of Natural Resources and Life Sciences, Vienna, Austria.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>W 1224</GrantID>
<Agency>Austrian Science Fund FWF</Agency>
<Country>Austria</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>05</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>FEBS J</MedlineTA>
<NlmUniqueID>101229646</NlmUniqueID>
<ISSNLinking>1742-464X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002413">Cations, Divalent</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9007-43-6</RegistryNumber>
<NameOfSubstance UI="D045304">Cytochromes c</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.-</RegistryNumber>
<NameOfSubstance UI="D002237">Carbohydrate Dehydrogenases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.99.18</RegistryNumber>
<NameOfSubstance UI="C019859">cellobiose-quinone oxidoreductase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002237" MajorTopicYN="N">Carbohydrate Dehydrogenases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002413" MajorTopicYN="N">Cations, Divalent</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045304" MajorTopicYN="N">Cytochromes c</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004579" MajorTopicYN="N">Electron Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020075" MajorTopicYN="N">Phanerochaete</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054730" MajorTopicYN="N">Protein Interaction Domains and Motifs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020037" MajorTopicYN="N">Sordariales</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055672" MajorTopicYN="N">Static Electricity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">cellobiose dehydrogenase</Keyword>
<Keyword MajorTopicYN="N">divalent cation bridging effect</Keyword>
<Keyword MajorTopicYN="N">domain docking</Keyword>
<Keyword MajorTopicYN="N">inter-domain electron transfer</Keyword>
<Keyword MajorTopicYN="N">oxidative cellulose degradation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>10</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2015</Year>
<Month>04</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>04</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>4</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>4</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25913436</ArticleId>
<ArticleId IdType="doi">10.1111/febs.13310</ArticleId>
<ArticleId IdType="pmc">PMC4676925</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Appl Environ Microbiol. 2012 Sep;78(17):6161-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22729546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2004 Apr;64(2):213-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14666391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2006 Jan 15;22(2):195-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16301204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev Lett. 2007 Jul 20;99(3):038104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17678334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 Mar;77(5):1804-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21216904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2001 Apr;67(4):1766-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11282631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2000 Jan 15;8(1):79-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10673428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Langmuir. 2013 Oct 1;29(39):12194-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24011082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Jan 31;289(5):2632-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24324265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Langmuir. 2012 Apr 24;28(16):6714-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22471986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Apr 29;111(17):6287-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24733907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2005 Jun;272(11):2869-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15943818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1991 Feb 26;196(1):101-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2001691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Aug 18;275(33):25508-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10801822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1997 Sep 1;53(Pt 5):580-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Chem Biol. 2011 Dec 16;6(12):1399-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22004347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protein Pept Sci. 2006 Jun;7(3):255-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16787264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Phys. 2008 Jun 28;128(24):244901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18601377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 May;75(9):2750-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19270118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2010 Oct;24(10):3829-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20522785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13822-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25201969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2014 May 26;53(22):5676-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24729576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Langmuir. 2013 May 7;29(18):5520-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23547891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2002 Jul 15;365(Pt 2):521-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11939907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Water Res. 2002 Feb;36(3):527-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11827315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1995 Dec 26;34(51):16585-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8527431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2010 May;5(5):883-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20431534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 2008 Jun;59(2):258-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18374601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Oct 8;330(6001):219-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20929773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1994 Apr 26;33(16):4769-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8161536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2002 Jan 18;315(3):421-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11786022</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Autriche</li>
<li>Suède</li>
</country>
<region>
<li>Vienne (Autriche)</li>
</region>
<settlement>
<li>Vienne (Autriche)</li>
</settlement>
</list>
<tree>
<country name="Autriche">
<region name="Vienne (Autriche)">
<name sortKey="Kracher, Daniel" sort="Kracher, Daniel" uniqKey="Kracher D" first="Daniel" last="Kracher">Daniel Kracher</name>
</region>
<name sortKey="Ludwig, Roland" sort="Ludwig, Roland" uniqKey="Ludwig R" first="Roland" last="Ludwig">Roland Ludwig</name>
<name sortKey="Sygmund, Christoph" sort="Sygmund, Christoph" uniqKey="Sygmund C" first="Christoph" last="Sygmund">Christoph Sygmund</name>
<name sortKey="Zahma, Kawah" sort="Zahma, Kawah" uniqKey="Zahma K" first="Kawah" last="Zahma">Kawah Zahma</name>
</country>
<country name="Suède">
<noRegion>
<name sortKey="Schulz, Christopher" sort="Schulz, Christopher" uniqKey="Schulz C" first="Christopher" last="Schulz">Christopher Schulz</name>
</noRegion>
<name sortKey="Gorton, Lo" sort="Gorton, Lo" uniqKey="Gorton L" first="Lo" last="Gorton">Lo Gorton</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000258 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000258 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25913436
   |texte=   Inter-domain electron transfer in cellobiose dehydrogenase: modulation by pH and divalent cations.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25913436" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020